Voltar ao Course

Probabilidades e Análise Combinatória - Parte 1

0% Completo
0/0 Passos
  1. Boas Vindas e Convite para o Grupo do WhatsApp
  2. Introdução às Probabilidades

    O que é uma Probabilidade?
  3. Como Calcular uma Probabilidade
  4. Como Calcular uma Probabilidade II
  5. Bora resolver uns exercícios do ENEM!
  6. Revisão: Simplificação de Frações
  7. Agora, vamos fazer umas questões de vestibulares!
  8. Exercício ENEM 2016
  9. Revisão: Frações, Notação Decimal e Porcentagem
  10. Exercícios do ENEM
  11. Mais exercícios do ENEM
  12. É PROIBIDO Errar Questões!
    7 Testes
  13. Resolva Questões com LIMITE de Tempo
    5 Testes
  14. Introdução às Probabilidades II
    Bora fazer umas questões do ENEM!
  15. Essa questão do ENEM é complicadinha, mas vamos lá!
  16. Essa questão do ENEM envolve bastante interpretação do enunciado.
  17. Mais uma do ENEM!
  18. Revisão: Como calcular Porcentagens
  19. Exercícios ENEM e Vestibulares
  20. Probabilidade de algo NÃO acontecer
  21. Probabilidade de algo NÃO acontecer II
  22. Exercícios de Vestibulares
  23. Exercícios de Montar a Equação
  24. Aprenda a jogar "Campo Minado" e resolva uma questão do ENEM
  25. É PROIBIDO Errar Questões! - Introdução às Probabilidades II
    7 Testes
  26. Resolva Questões com LIMITE De Tempo - Introdução às Probabilidades II
    5 Testes
  27. Probabilidade Condicional
    Exercícios ENEM e Vestibulares
  28. Exercícios ENEM
  29. É PROIBIDO Errar Questões! Probabilidade Condicional
    3 Testes
  30. Resolva Questões com LIMITE de Tempo - Probabilidade Condicional
    3 Testes
  31. Probabilidade Condicional II
    Probabilidade Condicional Passo a Passo
  32. Exercícios de Treinamento
  33. Exercícios do ENEM e Vestibulares
  34. Exercícios ENEM
  35. Exercícios ENEM e Vestibulares
  36. É PROIBIDO Errar Questões! - Probabilidade Condicional II
    6 Testes
  37. Resolva Questões com LIMITE De Tempo - Probabilidade Condicional II
    6 Testes
  38. Introdução à Análise Combinatória
    Introdução à Análise Combinatória
  39. Árvore de Possibilidades
    Árvore de Possibilidades I - Introdução
  40. Árvore de Possibilidades II
  41. Árvore de Possibilidades III
  42. Árvore de Possibilidades IV
  43. É PROIBIDO Errar Questões - Árvore de Possibilidades
    3 Testes
  44. Resolva Questões com LIMITE de Tempo - Árvore de Possibilidades
    3 Testes
  45. Árvore de Possibilidades - Continuação
    Revisão: Notação Exponencial
  46. Árvore de Possibilidades V
  47. Árvore de Possibilidades VI
  48. Árvore de Possibilidades VII
  49. Árvore de Possibilidades VIII
  50. Árvore de Possibilidades IX
  51. Árvore de Possibilidades X
  52. Árvore de Possibilidades XI
  53. Quantidade de Divisores de um Número
  54. É PROIBIDO Errar Questões - Árvore de Possibilidades II
    6 Testes
  55. Resolva Questões com LIMITE de Tempo - Árvore de Possibilidades II
    3 Testes
  56. Diagrama de Venn
    Diagrama de Venn
  57. Diagrama de Venn II
  58. Diagrama de Venn III
  59. Diagrama de Venn IV
  60. Diagrama de Venn V
  61. É PROIBIDO Errar Questões - Diagrama de Venn
    6 Testes
  62. Resolva Questões com LIMITE de Tempo - Diagrama de Venn
    5 Testes
  63. Prova Final
    Prova Final - Introdução às Probabilidades
    4 Testes
  64. Prova Final - Introdução às Probabilidades II
    2 Testes

Exercício Yes Matemática

Alvinho aprendeu a escrever as letras ‘a’ e ‘b’. Ele quer escrever palavras que lidas de trás para frente ficam iguais às palavras originais.

Por exemplo: ‘aabbbaa’

Essa palavra, de trás para frente fica ‘aabbbaa’, que é exatamente igual à original.

Mais exemplos: ‘aba’, ‘babab’, ‘bbbbbb’

a) Quantas palavras de 2 letras Alvinho consegue escrever, de modo que ela lida de trás para frente fica igual à original?

Resposta:

  • aa
  • bb

2 palavras

b) Quantas palavras de 3 letras Alvinho consegue escrever, de modo que ela lida de trás para frente fica igual à original?

Resposta:

  • aaa
  • aba
  • bab
  • bbb

4 palavras

c) Quantas palavras de 4 letras Alvinho consegue escrever, de modo que ela lida de trás para frente fica igual à original?

Resposta:

  • aaaa
  • abba
  • baab
  • bbbb

4 palavras

d) Quantas palavras de 5 letras Alvinho consegue escrever, de modo que ela lida de trás para frente fica igual à original?

Resposta:

  • aaaaa
  • aabaa
  • ababa
  • abbba
  • baaab
  • babab
  • bbabb
  • bbbbb

8 palavras

e) Quantas palavras de 6 letras Alvinho consegue escrever, de modo que ela lida de trás para frente fica igual à original?

Resposta:

  • aaaaaa
  • aabbaa
  • abaaba
  • abbbba
  • baaaab
  • babbab
  • bbaabb
  • bbbbbb

8 palavras

f) Alvinho quer escrever palavras de 6 letras, que lidas de trás para frente ficam iguais às originais. Além disso que ele quer que as palavras contenham pelo menos 4 letras “a”. Liste todas as possibilidades de palavras que ele consegue escrever obedecendo esses critérios.

  • aaaaaa
  • aabbaa
  • abaaba
  • baaaab

Exercício ENEM 2002

(ENEM 2002) O código de barras, contido na maior parte dos produtos industrializados, consiste num conjunto de várias barras que podem estar preenchidas com cor escura ou não. Quando um leitor óptico passa sobre essas barras, a leitura de uma barra clara é convertida no número 0 e a de uma barra escura, no número 1. Observe abaixo um exemplo simplificado de um código em um sistema de código com 20 barras.

(ENEM 2002) O código de barras, contido na maior parte dos produtos industrializados, consiste num conjunto de várias barras que podem estar preenchidas com cor escura ou não. Quando um leitor óptico passa sobre essas barras, a leitura de uma barra clara é convertida no número 0 e a de uma barra escura, no número 1. Observe abaixo um exemplo simplificado de um código em um sistema de código com 20 barras.

Se o leitor óptico for passado da esquerda para a direita irá ler: 01011010111010110001

Se o leitor óptico for passado da direita para a esquerda irá ler: 10001101011101011010

No sistema de código de barras, para se organizar o processo de leitura óptica de cada código, deve-se levar em consideração que alguns códigos podem ter leitura da esquerda para a direita igual à da direita para a esquerda, como o código 00000000111100000000, no sistema descrito acima.

Em um sistema de códigos que utilize apenas cinco barras, a quantidade de códigos com leitura da esquerda para a direita igual à da direita para a esquerda, desconsiderando-se todas as barras claras ou todas as escuras, é

(A) 14.
(B) 12.
(C) 8.
(D) 6.
(E) 4.

Resposta: 23 – 2 = 6
Alternativa D

Parabéns! Você completou a lição!

Opa! Você completou a lição! Excelente! Cada lição que você completar é um passo a mais rumo à sua aprovação!

Me avisa que você completou essa lição lá no grupo do WhatsApp! Vou ficar muito feliz em saber disso!

Link do grupo no WhatsApp:

https://chat.whatsapp.com/Fm4XWBtovHALeIjwBYAHGW

OBS: Vamos lá, entra lá no grupo e me avisa que você completou a lição!

Você tem alguma dúvida ou comentário?

Como foi a sua experiência?

Pode responder com sinceridade 🙂 A sua opinião é muito importante para ajudar a melhorar esse curso.