ENEM 2014

(ENEM 2014) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega outros dois filmes e assim sucessivamente. Ele soube que a videolocadora recebeu alguns lançamentos, sendo 8 filmes de ação, 5 de comédia e 3 de drama e, por isso, estabeleceu uma estratégia para ver todos esses 16 lançamentos. Inicialmente alugará, em cada vez, um filme de ação e um de comédia. Quando se esgotarem as possibilidades de comédia, o cliente alugará um filme de ação e um de drama, até que todos os lançamentos sejam vistos e sem que nenhum filme seja repetido.

De quantas formas distintas a estratégia desse cliente poderá ser posta em prática?

A) \(20 \times 8! + (3!)^2\)

B) \(8! \times 5! \times 3!\)

C) \(\frac{8! \times 5! \times 3!}{2^8}\)

D) \(\frac{8! \times 5! \times 3!}{2^2}\)

E) \(\frac{16!}{2^8}\)

Resposta: Alternativa B

ENEM 2010

(ENEM 2010) João mora na cidade A e precisa visitar cinco clientes, localizados em cidades diferentes da sua. Cada trajeto possível pode ser representado por uma sequência de 7 letras. Por exemplo, o trajeto ABCDEFA, informa que ele sairá da cidade A, visitando as cidades B, C, D, E e F nesta ordem, voltando para a cidade A. Além disso, o número indicado entre as letras informa custo do deslocamento entre as cidades. A figura mostra o custo de deslocamento entre cada uma das cidades.

(ENEM 2010) João mora na cidade A e precisa visitar cinco clientes, localizados em cidades diferentes da sua.
(ENEM 2010) João mora na cidade A

Como João quer economizar, ele precisa determinar qual o trajeto de menor custo para visitar os cinco clientes. Examinando a figura, percebe que precisa considerar somente parte das sequências, pois os trajetos ABCDEFA e AFEDCBA têm o mesmo custo. Ele gasta 1min30s para examinar uma sequência e descartar sua simétrica, conforme apresentado.

O tempo mínimo necessário para João verificar todas as sequências possíveis no problema é de

A) 60 min.
B) 90 min.
C) 120 min.
D) 180 min.
E) 360 min.

Resposta: \( \frac{5!}{2} \times 1.5 = 90 \)
Alternativa B

ENEM 2015

(ENEM 2015) Numa cidade, cinco escolas de samba (I, II, III, IV e V) participaram do desfile de Carnaval. Quatro quesitos são julgados, cada um por dois jurados, que podem atribuir somente uma dentre as notas 6, 7, 8, 9 ou 10. A campeã será a escola que obtiver maior pontuação na soma de todas as notas emitidas. Em caso de empate, a campeã será a que alcançar a maior soma das notas atribuídas pelos jurados no quesito Enredo e Harmonia. A tabela mostra as notas do desfile desse ano no momento em que faltava somente a divulgação das notas do jurado B no quesito Bateria.

(ENEM 2015) Numa cidade, cinco escolas de samba (I, II, III, IV e V) participaram do desfile de Carnaval. Quatro quesitos são julgados, cada um por dois jurados, que podem atribuir somente uma dentre as notas 6, 7, 8, 9 ou 10. A campeã será a escola que obtiver maior pontuação na soma de todas as notas emitidas. Em caso de empate, a campeã será a que alcançar a maior soma das notas atribuídas pelos jurados no quesito Enredo e Harmonia. A tabela mostra as notas do desfile desse ano no momento em que faltava somente a divulgação das notas do jurado B no quesito Bateria.

Quantas configurações distintas das notas a serem atribuídas pelo jurado B no quesito Bateria tornariam campeã a Escola II?
A 21
B 90
C 750
D 1 250
E 3 125

Resposta: Alternativa C